

Real-Time Mission Management in Next Generation Spacecraft: Human Factors Challenges

Robert S. McCann, Ph.D.

Jeffrey McCandless, Ph.D.

&

The ISIS Lab Team

Human Factors Research and Technologies Division
NASA Ames Research Center
Moffett Field CA

- Shuttle Most complex flight vehicle ever designed
 - Experimental: First Generation Design
- Large number of *very complex* engineering systems:
 - Propulsion
 - Electrical
 - Life Support
 - Navigation
 - Communication
- Operating Conditions:
 - Extremely Harsh & Dynamic
- Result:
 - Systems malfunctions are a *real and present danger* to crew safety and mission success

- Each shuttle system extensively instrumented:
- Scores of sensors measuring various operational parameters:
 - pressures
 - temperatures
 - flow rates
 - RPMs
- Must be monitored continuously to:
 - Maintain awareness of
 - Systems mode
 - System functioning

- Problem:
- Insufficient display real estate in the cockpit
- Not enough pairs of eyes to process it (2 crew + 1 mission specialist)

- Approximately 100 subject matter experts at Mission Control
- dedicated group for each system
- monitor telemetered information from vehicle

 work real-time mission management in tight collaboration with the crew

Propulsion

ECLSS

GN&C

Tightly coupled Crew-Ground Coordination

- Tightly-coupled crew-ground coordination not possible
- More autonomous concept of operations required

• Onboard mission management capabilities have to be enhanced

- Fundamental CEV Design Problem:
- How to enhance onboard mission management capabilities given the:
 - Limited display real estate in the cockpit
 - Limited pairs of eyes onboard the vehicle

• A solution in two parts:

Part 1: Enhanced onboard automation

- Part 2: Maximize Crew Mission Management Capabilities
 - Optimize Human-Automation Interactions
 - Define appropriate Human-machine Functional Allocation
 - Prevent well known human factors pitfalls
 - e.g., The "OOTLUF" Problem
 - Design and evaluate user interfaces to support selected functional allocation
 - Avoiding "Clumsy Automation"
 - Make greater use of human information processing capabilities
 - Multi-modal interfaces

- A human-centered empirical approach:
- Define appropriate Human-Machine functional allocation
 - Start with a thorough empirical characterization of mission management activities in today's cockpit
 - In "no-comm" (autonomous) mode

Intelligent Spacecraft Interface Systems (ISIS) Lab Overview

Equipment

- 12 liquid crystal displays (LCDs) with touch screens representing
 - cockpit displays
 - side panels
 - overhead panels
 - keyboard

- A multi-platform computer network
- ISCAN ETL-500 eye tracking system
- Audio system
- An experimenter controller station

MET ~ 8.30

Continuous Tasks:

- · Check Navigation State:
 - •Trajectory, Velocity, Vertical Velocity, Attitude
 - Current Abort Options

· Check Systems Health:

- Main Engines:
 - Ullage Pressures
 - Helium flows

Fault Management Stages

"If 2(3) Ps < 31.6 or >34.5 MPS ULL PRESS - OP When all Ps > 34.5 MPS LH2 ULL PRESS - Auto"

BFS GNC SYS SUM 1

"If 2(3) Ps < 31.6 or >34.5 MPS ULL PRESS - OP When all Ps > 34.5 MPS LH2 ULL PRESS - Auto"

Experiment

- Characterize and quantify nominal and off-nominal behavior in a task environment representative of current spacecraft cockpits.
- Demonstrate the validity of using eye movement measurements to infer multitasking strategies and characterize multi-tasking behavior.
- Compare behavior of "novices" (retired United Airline Pilots) with experts (Current Astronauts).

- 4 ascent runs per participant, each 8.5 minute in duration
- 3 types of trials: nominal runs, multiple-malfunction run, single-malfunction run

Eye movement gaze position **Recorded** at 60 Hz

(yielding approx 60,000 X-Y readings per run)

Fixation = at least 150 msec in same area H and V (range = +- 25 pixels [approx 1"]) (about 1000 fixations per run)

Adjust gaze coordinates based on preand post- **Calibration** readings

Categorize fixations by region and object of Interest

United Airline Pilots: Fixation Distribution

Astronauts: Fixation Distribution

Sequences of Fixations on GNC Displays by Astronauts

Fixation Sequences on Systems Displays by Astronauts

Information Acquisition Strategies: Nominal Runs

• Sequences longer than those predicted by stratified random

Performance Results for Single-Malfunction Runs

Procedures performed correctly: 4/5 (80%) 5/5 (100%)
Response time: 0:57 0:22

• Accuracy higher and response time faster better for the astronauts

• Multi-Mal Run Results

Helium Regulator Failure

	Pilots	Astronauts
Procedures performed correctly:	0/6 (0%)	5/5 (100%)
Response time:	"2:48"	2:48

Computer Failure

	Pilots	Astronauts
Procedures performed correctly:	1/3 (33%)	4/5 (80%)
Response time:	2:49	1:31
•		

Coolant Failure

Procedures performed correctly: Response time:	Pilots 2/6 (33%) 3:43	Astronauts 4/4 (100%) 1:52
	0.10	

Performance Results for Single-Malfunction Runs

Procedures performed correctly: 4/5 (80%) 5/5 (100%)
Response time: 0:57 0:22

• Accuracy higher and response time faster better for the astronauts

A Tale of Two Strategies

• Time Share: Divide attention between Fault Management and nominal scan

• No Time Share: Devote full attention to Fault Management activities

	Alert Identi- fication	Flight Data File	Switch	Verify	
Nominal					Nominal
Scan					Scan

Mission Elapsed Time (MET) (min:sec)

Not to scale.

- Conclusions:
 - Nominal runs:
 - More attention to flight displays than systems displays
 - Participants shift back and forth between acting as
 - Pilots of a flight vehicle
 - Process controllers
 - Off-nominal runs:
 - Fault management causes:
 - Cognitive tunneling on fault-related information
 - Up to several minutes in duration
 - Primary fault management "time sinks":
 - Reading flight data files
 - Locating cockpit switches

• Determine appropriate level of human-machine functional allocation (level of autonomy)

OPS Concept: HCl for Level IV automation

- Dedicated Malfunction Handling display:
 - Magnifies system area where fault exists
 - Procedures prioritized
 - Electronic flight data file
 - Green color coding
 - Virtual switch icon
 - Green switch position indicator
 - Graphical reconfiguration cue
 - green valve circle indicator
 - Permission: Physically touch green switch position indicator

Step 1:

- Left helium isol valve A now closed
 Flow through Leg A: gray (no flow)
- Text message turns gray
- Virtual switch:
 - Position indicator white
 - shows actual position (CL)
- Automation:
 - asseses system status
 - dP/dt still off-nominal high

Step 2: Open Left ISOL Valve A

- Display indications:
- First procedural de-emphasized
 - (gray; moved down)
- New procedure in green
- Valve indicator green:
 - commanded state change
- Commanded switch position
 - Indicated, also in green
- Crewember:
 - touches commanded switch position indicator

- System Status:
 - ISOL Valve A, B Open
 - dP/dt still indicating problem

Step 3: Close Left ISOL Valve B

- Display indications:
- 2nd procedural de-emphasized
 - (gray; moved down)
- New procedure in yellow
- B Valve indicator yellow:
 - commanded state change
- Commanded switch position
 - Indicated, also in yellow
- Permission:
 - Crewember touches commanded switch position indicator

- Procedures complete:
- Display indications:
- dP/dt back to nominal color and value
- Final system/switch configuration shown

- Goal: Maximizing crew mission management capabilities
- Clear Limitation with Level IV concept:

• Virtually All human-system interactions are still

visual-manual

- Grossly underutilizes available human information processing resources
- Multi-modal human-automation interface channels

Future Directions

Near Term:

- Baseline measure of Level IV Automation Concept
- First: visual-manual concept only
- Then: visual-manual augmented with auditory-vocal channel

• Far Term:

 Develop capability for multi-modal human-machine interaction in two crewmember cockpit